A Reward-based Algorithm for Hyperparameter Optimization of Neural Networks

University essay from Karlstads universitet/Institutionen för matematik och datavetenskap (from 2013)

Abstract: Machine learning and its wide range of applications is becoming increasingly prevalent in both academia and industry. This thesis will focus on the two machine learning methods convolutional neural networks and reinforcement learning. Convolutional neural networks has seen great success in various applications for both classification and regression problems in a diverse range of fields, e.g. vision for self-driving cars or facial recognition. These networks are built on a set of trainable weights optimized on data, and a set of hyperparameters set by the designer of the network which will remain constant. For the network to perform well, the hyperparameters have to be optimized separately. The goal of this thesis is to investigate the use of reinforcement learning as a method for optimizing hyperparameters in convolutional neural networks built for classification problems. The reinforcement learning methods used are a tabular Q-learning and a new Q-learning inspired algorithm denominated max-table. These algorithms have been tested with different exploration policies based on each hyperparameter value’s covariance, precision or relevance to the performance metric. The reinforcement learning algorithms were mostly tested on the datasets CIFAR10 and MNIST fashion against a baseline set by random search. While the Q-learning algorithm was not able to perform better than random search, max-table was able to perform better than random search in 50% of the time on both datasets. Hyperparameterbased exploration policy using covariance and relevance were shown to decrease the optimizers’ performance. No significant difference was found between a hyperparameter based exploration policy using performance and an equally distributed exploration policy.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)