On the superconducting critical temperature in Eliashberg theory

University essay from KTH/Fysik

Abstract: This thesis presents a brief synopsis of the derivations of the BCS and Eliashberg equations. An analytic formula for the critical temperature $T_c$ in Eliashberg theory is derived, which contains a sum of iterative integral corrections. These iterative integral corrections are the result of an iterative expression for the gap quotient $\Delta(\iw, T)/\Delta(0,T)$, which is derived. At the critical temperature this expression contains no reference to the critical temperature itself due to the gap approaching zero in this limit, $\lim_{T \rightarrow T_c} \Delta(\iw, T) = 0$. This enables explicit calculation of the critical temperature through the aforementioned iterative expression.\\ \\The behaviour of the iterative expression and its corrections are explored numerically with a toy spectral function $\sF$. Through these numerical experiments, this formula is found to be consistent with, though not equal to the successful McMillan formula for the coupling parameter $\lambda$ in the range $0.3 \leq \lambda \leq 1.5$. Below this value, the McMillan formula is found to approach zero critical temperature $T_c$ more rapidly, raising the future question of which of the two expressions is most successful in predicting the critical temperature $T_c$ in this range. \\ \\ For a toy spectral function with a single mode, the zeroth order correction of the iterative expression for the critical temperature $T_c$ is found to be adequate for most practical purposes due to the magnitude of measurement errors in real life measurements of model parameters.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)