Increasing the Crossover Levels of Beams in Geodesic Luneburg Lens Antennas

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: The new and forthcoming generation of mobile networks intend to operate at considerably higher frequencies than the previous systems. This lift in frequency of operation alleviates today’s communication systems’ crowded bandwidth and allows for faster data rates than previously possible. However, the suggested increase in frequency of operation introduces new challenges and new antenna solutions are required. One possible candidate for the future communication systems is the Luneburg lens antenna that offers high gain, a simple feeding network and wide-angle scanning. Scanning of lens antennas occurs by placing several feeds along its focal line, but where the width size of the feed place a major constraint on the achievable crossover level between beams. In this thesis, we aim to increase the crossover level between beams in a geodesic Luneburg lens antenna. The importance of a high crossover level is to ensure a more equal performance in terms of data rate transfer to all end users. Here, we investigate two different methods on achieving a higher crossover level. The first method is to utilize a near-field lens while the other method concerns the usage of a generalized Luneburg lens that allows to displace the focal point outside the lens’ contour. A comparison study of these two alternatives are made where it is shown that a generalized Luneburg lens is the preferable choice. A generalized geodesic Luneburg lens is thereafter designed that attains a crossover level of -3:87 dB at the central frequency 62 GHz for the center port. The lens performs well with a bandwidth of 15% and a scanning range between ±52°. The reflection coefficient is below -13 dB in the frequency range of interest and the cross-talk is below -17:9 dB. The realized gain is simulated to 19:01 dBi at 57 GHz, 20:85 dBi at 62 GHz and 21:34 dBi at 67 GHz for the central port. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)