Humanoid Robots and Artificial Intelligence in Aircraft Assembly : A case study and state-of-the-art review

University essay from Högskolan i Jönköping/JTH, Industriell organisation och produktion

Abstract: Increasing demands, a need for more efficient manufacturing processes and pressure to remain competitive have been driving the development and use of technology in the industry since the industrial revolution. The number of operational industrial robots worldwide have been increasing every year and is expected to reach 3 billion by 2020. The aerospace industry still faces difficulty when it comes to automation due to the complexity of the products and low production volumes. These aspects make the use of traditional fixed robots very difficult to implement and economically unfeasible, which is the reason why the assembly process of aircrafts is mainly a manual work. These challenges have led the industry to consider other possibilities of automation, bringing the attention of many companies to humanoid robots. The aim of this thesis was to investigate the applicability of autonomous humanoid robots in aircraft assembly activities by focusing on four domains: mobility, manipulation, instruction supply and human-robot interaction. A case study was made in one workstation of the pre-assembly process of a military aircraft at Saab AB, in order to collect technical requirements for a humanoid robot to perform in this station. Also, a state-of-the-art literature review was made focusing on commercially available products and ongoing research projects. The crossing of information gathered by the case study and the state-of-the-art review, provided an idea of how close humanoid robots are to performing in the aircraft assembly process in each of the four domains. In general, the findings show that the mechanical structure and other hardware are not the biggest challenge when it comes to creating highly autonomous humanoid robots. Physically, such robots already exist, but they mostly lack autonomy and intelligence. In conclusion, the main challenges concern the degree of intelligence for autonomous operation, including the capability to reason, learn from experience, make decisions and act on its own, as well as the integration of all the different technologies into one single platform. In many domains, sub-problems have been addressed individually, but full solutions for, for example, autonomous indoor navigation and object manipulation, are still under development.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)