Recurrent neural networks in electricity load forecasting

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: In this thesis two main studies are conducted to compare the predictive capabilities of feed-forward neural networks (FFNN) and long short-term memory networks (LSTM) in electricity load forecasting. The first study compares univariate networks using past electricity load, as well as multivariate networks using past electricity load and air temperature, in day-ahead load forecasting using varying lookback periods and sparsity of past observations. The second study compares FFNNs and LSTMs of different complexities (i.e. network sizes) when restrictions imposed by limitations of the real world are taken into consideration. No significant differences are found between the predictive performances of the two neural network approaches. However, adding air temperature as extra input to the LSTM is found to significantly decrease its performance. Furthermore, the predictive performance of the FFNN is found to significantly decrease as the network complexity grows, while the predictive performance of the LSTM is found to increase as the network complexity grows. All the findings considered, we do not find that there is enough evidence in favour of the LSTM in electricity load forecasting.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)