To Force a Bug: Extending Hybrid Fuzzing : Extending Hybrid Fuzzing

University essay from Blekinge Tekniska Högskola/Institutionen för datavetenskap; Blekinge Tekniska Högskola/Institutionen för datavetenskap

Abstract: One of the more promising solutions for automated binary testing today is hybrid fuzzing, a combination of the two acknowledged approaches, fuzzing and symbolic execution, for detecting errors in code. Hybrid fuzzing is one of the pioneering works coming from the authors of Angr and Driller, opening up for the possibility for more specialized tools such as QSYM to come forth. These hybrid fuzzers are coverage guided, meaning they measure their success in how much code they have covered. This is a typical approach but, as with many, it is not flawless. Just because a region of code has been covered does not mean it has been fully tested. Some flaws depend on the context in which the code is being executed, such as double-free vulnerabilities. Even if the free routine has been invoked twice, it does not mean that a double-free bug has occurred. To cause such a vulnerability, one has to free the same memory chunk twice (without it being reallocated between the two invocations to free). In this research, we will extend one of the current state-of-the-art hybrid fuzzers, QSYM, which is an open source project. We do this extension, adding double-free detection, in a tool we call QSIMP. We will then investigate our hypothesis, stating that it is possible to implement such functionality without losing so much performance that it would make the tool impractical. To test our hypothesis we have designed two experiments. One experiment tests the ability of our tool to find double-free bugs (the type of context-sensitive bug that we have chosen to test with). In our second experiment, we explore the scalability of the tool when this functionality is executed. Our experiments showed that we were able to implement context-sensitive bug detection within QSYM. We can find most double-free vulnerabilities we have tested it on, although not all, because of some optimizations that we were unable to build past. This has been done with small effects on scalability according to our tests. Our tool can find the same bugs that the original QSYM while adding functionality to find double-free vulnerabilities.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)