Digitally Controlled Oscillator for mm-Wave Frequencies

University essay from Lunds universitet/Institutionen för elektro- och informationsteknik

Abstract: In the fifth generation of mobile communication, 5G, frequencies above 30 GHz, so-called millimeter-wave (mm-wave) frequencies are expected to play a prominent role. For the synthesis of these frequencies, the all-digital phase locked loop (ADPLL) has recently gained much attention. A core component of the ADPLL is the digitally controlled oscillator (DCO), an oscillator that tunes the frequency discretely. For good performance, the frequency steps must be made very small, while the total tuning range must be large. This thesis covers several coarse- and fine-tuning techniques for DCOs operating at mm-wave frequencies. Three previously not published fine-tuning schemes are presented: The first one tunes the second harmonic, which will, due to the Groszkowski effect, tune the fundamental tone. The second one is a current-modulation scheme, which utilizes the weak current-dependence of the capacitance of a transistor to tune the frequency. In the third one, a digital-to-analog converter (DAC) is connected to the bulk of the differential pair and tunes the frequency by setting the bulk voltage. The advantages and disadvantages of the presented tuning schemes are discussed and compared with previously reported fine-tuning schemes. Two oscillators were implemented at 86 GHz. Both oscillator use the same oscillator core and hence have the same power consumption and tuning range, 14.1 mW and 13.9%. A phase noise of -89.7 dBc/Hz and -111.4 dBc/Hz at 1 MHz and 10 MHz offset, respectively, were achieved, corresponding to a Figure-of-Merit of -178.5 dBc/Hz. The first oscillator is fine-tuned using a combination of a transformer-based fine-tuning and the current modulation scheme presented here. The achieved frequency resolution is 55 kHz, but can easily be made finer. The second oscillator utilizes the bulk bias technique to achieve its fine tuning. The fine-tuning resolution is here dependent on the resolution of the DAC; a 100μV resolution corresponds to a resolution of 50 kHz.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)