Efficient, Scalable and Secure Vehicular Communication System : An Experimental Study

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Awareness of vehicles’ surrounding conditions is important in today’s intelligent transportation system. A wide range of effort has been put in to deploy Vehicular Communication (VC) systems to make driving conditions safer and more efficient. Vehicles are aware of their surroundings with the help of authenticated safety beacons in VC systems. Since vehicles act according to the information conveyed by such beacons, verification of beacons plays an important role in becoming aware of and predicting the status of the sender vehicle. The idea of implementing secure mechanisms to deal with a high rate of incoming beacons and processing them with high efficiency becomes a very important part of the whole VC network. The goal of this work was to implement a scheme that deals with a high rate of the incoming beacon, preserve non-repudiation of the accepted messages which contains information about the current and near-future status of the sender vehicle, and at the same time keep the computation overhead as low as possible. Along with this, maintaining user privacy from a legal point of view as well as from a technical perspective by implementing privacy-enhancing technologies. These objectives were achieved by the introduction of Timed Efficient Stream Loss-Tolerant Authentication (TESLA), periodic signature verification, and cooperative verification respectively. Four different scenarios were implemented and evaluated, starting and building upon the baseline approach. Each approach addressed the problems that were aimed at this work and results show improved scalability and efficiency with the introduction of TESLA, periodic signature verification, and cooperative verification.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)