Performance Evaluation of a bench-scale Thermochemical Storage System

University essay from KTH/Energiteknik

Abstract: This thesis is part of a joint thermochemical heat storage (TCS) research project named Neutrons for Heat Storage (NHS), involving three Nordic research institutes. The project isfunded by Nordforsk and KTH Royal Institute of Technology for the project partner KTH. KTH´s objective in the NHS project is to design, build and operate a bench-scale TCS system using strontium chloride (SrCl2) and ammonia (NH3) as a solid-gas reaction system for low temperature heat storage (40-100 ℃). Here, absorption of NH3 into SrCl2⋅NH3 (monoammine) to form SrCl2⋅8NH3 (octaammine) is used for heat release, and desorption (of NH3 from SrCl2⋅8NH3 to form SrCl2⋅NH3) for heat storage. This thesis initially aimed to conduct commissioning, operation and experimental data acquisition, and performance evaluation of the bench-scale TCS system. However, due to various delays in equipment delivery and shortcomings discovered during the project timeline, its objectives were then redefined to partially commission the system with NH3 and carry out the first absorption cycle in one of the reactors. This thesis project was partly a joint project, where Hjörtur Brynjarsson performed various tasks in the overarching NHS project as part of his thesis project, alongside the work described in this report. Brynjarsson’s work involved reviewing and adapting the design of this bench-scale TCS system. For further details about the shortcomings discovered and corresponding design adaptations, readers are referred to Brynjarsson’s report. In this thesis project, to understand the design of the TCS system, background research on the current project and the SrCl2-NH3 reaction pair was conducted. This includes comprehending the evolution of the project carried out by the previous students and project researchers to the current thesis project. Following this, the maximum theoretical volume of composites in the reactor-heat exchanger (R-HEX) was determined. This was found to be 5262 cm3, and the corresponding SrCl2 in the R-HEX is 1631 g for an average salt density in the composite of 0.31g/cm3. Thereupon, a literature review was conducted on the performance evaluation of Thermal energy storage (TES) systems. The final report of International Energy Agency (IEA) Annex 30 (on Applications of TES in the Energy Transition: Benchmarks and Developments) presents numerous Key Performance Indicators (KPIs) relevant to TES systems and are classified into technical, economic, and lifetime performance indicators. These KPIs are used as the basis for the current thesis work and are compared to examples from other metalhalide-NH3 TCS systems. Finally, for the current thesis project, it was decided to focus the KPIs on technical performance indicators, such as energy storage capacity [kJ] and reaction advancement [-]. As one of the main tasks within the project, the data acquisition system (for measuring temperature, pressure, and mass flow rate parameters), as well as the system components and many final connections, were commissioned herein. A data acquisition manual is thus provided for future use. It considers all the data measuring instruments and their respective locations in the system and the data logger. Also, explanations are provided for the calibration of these instruments. As the next main task, a thermal homogeneity test of the reactors (to compare the heat transfer similarity of reactors before the first reaction) was performed, to investigate the underlying assumption that the reactors were identical was valid. After conducting the test, it was found that reactor A had slightly better heat transfer than reactor B. However, this inhomogeneity is not significant enough to affect the system’s overall performance. As the final main task, partial commissioning of the system (i.e., for the first absorption reaction in reactor B) with N2 (as a mock-test to troubleshoot the procedure forNH3) and then with NH3 were carried out. During the partial commissioning of the system using NH3, the NH3 was added in short pressure pulses (between 5-8 bar(a)) with idling between each pulse due to some practical reasons. In addition to this, the absorption reaction was carried out under less than ideal (still not unfavourable) absorption conditions by deliberately setting the heat transfer fluid (HTF) at high temperatures (e.g., at 105, 90, and 65 °C) to avoid a drastic pressure drop in the reactor between each NH3 pulse. At the end of the NH3 commissioning (possible completion of absorption), it was found that 1541 g of NH3 passed through the mass flow meter. The most likely scenario is that 1521 g of NH3 reacted with the SrCl2 salt in the reactor (the rest, 20 g, is in the dead space, comprised of, e.g., the voids in composite, voids in the R-HEX, and the volume in the gas lines). The heat released from the absorption reaction, in this case, is 3774 kJ (or 1.05 kWh), considering all eight ammines. The heat released from the absorption reaction of SrCl2∙NH3 (monoammine) to SrCl2∙8NH3 (octaammine) is 3224 kJ (or 0.89 kWh). The discharge power calculation is excluded here due to the special approach used in this first absorption, with long idling steps, making that irrelevant. In addition, the sustainability aspects of this TCS technology (SrCl2-NH3) used in this project were analyzed. Based on the analysis, it was found that this technology is environmentally friendly, economically feasible, and can aid in social development. Hence, this technology is considered sustainable, and the designed TCS system has an overall positive impact on sustainable development. To conclude, within this project, the designed TCS system was successfully operated for the first absorption in one reactor and is found to meet the design storage capacity (0.89 kWh). As this TCS system was mainly operated for data acquisition, and since the first absorption was performed at less-than ideal conditions, better absorption conditions are recommended for the subsequent cycles, accommodating better temperature and pressure conditions for both absorption and desorption reactions. Finally, evaluation of the system's technical performance at different reaction conditions (pressure, temperature) and optimizing the system for energy and economics are some of the key follow-up tasks for future work that will benefit the system. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)