Understanding Effects of Isothermal Heat Treatments on Microstructure of LMD-w Titanium Alloy (Ti-6242) : On solution heat treated microstructure

University essay from Karlstads universitet/Fakulteten för hälsa, natur- och teknikvetenskap (from 2013)

Abstract: The use and knowledge of additive manufacturing technologies are rapidly growing. It is crucial to understand the processing-structure-property relationship, which is highly discussed when trying to understand the science of a material. One commonly used material in aerospace applications is titanium alloy, lately Ti-6Al-2Sn-4Zr-2Mo (Ti-6242). This work is addressed towards a laser metal deposition wire (LMD-w) manufactured Ti-6242 built on a Ti-6Al-4V (Ti-64) base plate.  The microstructure of titanium alloys, like all other alloys, are highly dependent on its thermal history. It is crucial to understand the microstructural change in order to optimize the material properties. The prediction of microstructure through simulation can be improved by obtaining experimental input. Since the microstructure of an LMD-w manufactured component is different from the subtractive manufactured, the change from heat treatments are different considering the different start structures. It is therefore of interest to analyse isothermal heat treatments effect on solution heat treated microstructure of LMD-w Ti-6242, from an industrial application point of view. The objective of this work is to analyse the effect of isothermal heat treatment on microstructural changes for LMD-w Ti-6242 wall.  The as received state was solution heat treated according to GKN standard, isothermal treatments were additionally performed and the change was analysed with microstructural characterization. The prior beta grain size, alpha lath thickness, phase fraction and hardness have been measured. Focus has been on the Ti-6242 wall for the measurements of alpha lath thickness and phase fraction. However, an analysis of the interface and heat affected zone (HAZ) has been made as well. MIPAR, an image analysis program was used for alpha lath thickness and phase distribution measurements. It has been concluded that the hardness of the material increases with increasing isothermal temperature during heat treatment and that the lath thickness increases with longer holding time. An equilibrium diagram has been obtained for Ti-6242 from a solution heat treated microstructure of LMD-w between the temperatures of 700°C and 1000°C and a time-temperature-transformation diagram (TTT-diagram), in the range of 700°C-1000°C and a holding time from 30 seconds to 2 hours.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)