Deep Learning Method used in Skin Lesions Segmentation and Classification

University essay from KTH/Medicinsk teknik

Abstract: Malignant melanoma (MM) is a type of skin cancer that is associated with a very poor prognosis and can often lead to death. Early detection is crucial in order to administer the right treatment successfully but currently requires the expertise of a dermatologist. In the past years, studies have shown that automatic detection of MM is possible through computer vision and machine learning methods. Skin lesion segmentation and classification are the key methods in supporting automatic detection of different skin lesions. Compared with traditional computer vision as well as other machine learning methods, deep neural networks currently show the greatest promise both in segmentation and classification. In our work, we have implemented several deep neural networks to achieve the goals of skin lesion segmentation and classification. We have also applied different training schemes. Our best segmentation model achieves pixel-wise accuracy of \textbf{0.940}, Dice index of \textbf{0.867} and Jaccard index of \textbf{0.765} on the ISIC 2017 challenge dataset. This surpassed the official state of the art model whose pixel-wise accuracy was 0.934, Dice index 0.849 and Jaccard Index 0.765. We have also trained a segmentation model with the help of adversarial loss which improved the baseline model slightly. Our experiments with several neural network models for skin lesion classification achieved varying results. We also combined both segmentation and classification in one pipeline meaning that we were able to train the most promising classification model on pre-segmented images. This resulted in improved classification performance. The binary (melanoma or not) classification from this single model trained without extra data and clinical information reaches an area under the curve (AUC) of 0.684 on the official ISIC test dataset. Our results suggest that automatic detection of skin cancers through image analysis shows significant promise in early detection of malignant melanoma.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)