Deep Learning based Video Super- Resolution in Computer Generated Graphics

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Super-Resolution is a widely studied problem in the field of computer vision, where the purpose is to increase the resolution of, or super-resolve, image data. In Video Super-Resolution, maintaining temporal coherence for consecutive video frames requires fusing information from multiple frames to super-resolve one frame. Current deep learning methods perform video super-resolution, yet most of them focus on working with natural datasets. In this thesis, we use a recurrent back-projection network for working with a dataset of computer-generated graphics, with example applications including upsampling low-resolution cinematics for the gaming industry. The dataset comes from a variety of gaming content, rendered in (3840 x 2160) resolution. The objective of the network is to produce the upscaled version of the low-resolution frame by learning an input combination of a low-resolution frame, a sequence of neighboring frames, and the optical flow between each neighboring frame and the reference frame. Under the baseline setup, we train the model to perform 2x upsampling from (1920 x 1080) to (3840 x 2160) resolution. In comparison against the bicubic interpolation method, our model achieved better results by a margin of 2dB for Peak Signal-to-Noise Ratio (PSNR), 0.015 for Structural Similarity Index Measure (SSIM), and 9.3 for the Video Multi-method Assessment Fusion (VMAF) metric. In addition, we further demonstrate the susceptibility in the performance of neural networks to changes in image compression quality, and the inefficiency of distortion metrics to capture the perceptual details accurately. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)