Fine-grain Indoor Localization Infrastructure for Real-time Inspectionof Large Buildings

University essay from KTH/Reglerteknik

Author: Asad Khalid Raja; [2015]

Keywords: ;


This master thesis project is about the systems integration of an indoor localizationsystem using Ultra Wideband Impulse Radio and a drone platform which uses theParrot AR.DRONE 2.0 along with the Robot Operating System (ROS). The goal wasto use o-the-shelf components to integrate an indoor localization system which can beused for energy modelling, indoor environmental panoramas and visual inspection oflarge buildings. The system architecture is explored, implemented and then subjectedto extensive testing. Experimental results of the openRTLS UWB system illustrateaccurate readings down to 2cm for Tag positions. The Parrot AR.DRONE 2.0 waschosen due to its low cost and agility; the open source drivers of ROS ensured modularsystem software, which has room for upgrades. The drone system can be used withoptional additional sensors, either attached internally or externally, to scan indoorareas and form environmental panoramas which can quantify ambient environmentalparameters such as temperature, humidity or pressure in harsh or hard to reach areas.The live video feed from the camera facilitates navigation in NLOS conditions. Thereal time ight path of the Parrot AR.DRONE 2.0 combined with the real time positiondata of the openRTLS UWB-IR system oers a unique insight into ne-grain data oflarge buildings.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)