Ensembles of Single Image Super-Resolution Generative Adversarial Networks

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Generative Adversarial Networks have been used to obtain state-of-the-art results for low-level computer vision tasks like single image super-resolution, however, they are notoriously difficult to train due to the instability related to the competing minimax framework. Additionally, traditional ensembling mechanisms cannot be effectively applied with these types of networks due to the resources they require at inference time and the complexity of their architectures. In this thesis an alternative method to create ensembles of individual, more stable and easier to train, models by using interpolations in the parameter space of the models is found to produce better results than those of the initial individual models when evaluated using perceptual metrics as a proxy of human judges. This method can be used as a framework to train GANs with competitive perceptual results in comparison to state-of-the-art alternatives. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)