Implementation of DC Supervisory Control : Optimal Power Flow Calculator

University essay from KTH/Industriella informations- och styrsystem

Author: Muhammad Hassan Fidai; [2014]

Keywords: ;

Abstract: Integration of renewable resources such as remote solar or wind farms and electricpower trading between neighbouring countries lead to new requirements on the development of thetransmission grids. Since AC grid expansion is limited by e.g. legislations issues, High VoltageDirect Current (HVDC) technology with its diverse benets compared to AC is being considered asappropriate alternative solution. The developed HVDC grid can be either embedded inside one ACgrid or connects several AC areas. In both architectures, the separate DC supervisory control can beproposed to control the HVDC grids using the interfacing information from AC Supervisory ControlAnd Data Acquisition (SCADA). The supervisory control is supposed to calculate the optimal power ow (OPF) in order to run the system in the most optimal situation. Based on the architecture, therequired information, boundary of the system and also objective function can vary. The aim of the thesis is to present the ndings of a feasibility study to implement a supervisorycontrol for bipolar Voltage Source Converter (VSC) HVDC grids in possible real time platforms. DCsupervisory control has a network topology manager to identify the grid conguration and employsan OPF calculator based on interior point optimization method to determine the set-point valuesfor all HVDC stations in a grid. OPF calculator takes into account the DC voltage, converter andDC line constraints.ii

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)