Comparing air quality in a training facility : What effects do air balancing have for carbon dioxide reduction?

University essay from Högskolan i Gävle/Energisystem

Abstract: The link between a good indoor climate and environmental impacts e.g. global warming and different pollution in the air is something that are important today and will certainly become more important in the future with increased energy prices and new laws. Too keep the indoor air quality within limits is it important to have a good and competitive ventilationsystem. The ventilations function is mainly to supply fresh air and to remove polluted air from the room. It’s important that the ventilation system works as it should so that the indoor air quality is as good as possible. The lack of good ventilation can create several symptoms such as headaches, nausea, fatigue, poor concentration etc. In Sweden are ventilation control mandatory for every newly produced building and this control are repetitive usually every 3-6 years for some types of buildings.   The foundation of this thesis is from a previous degree project performed by a master’s student in 2013 named Ander Barroeta with supervision of Magnus Mattsson and Taghi Karimipanah. The thesis was to improve and design a ventilation system in two rooms at a training facility named Friskis & Svettis in Gävle so that the CO2 level did not exceed 1000 ppm.   In this thesis was the main goal to do similar measurements as the previous thesis and compare the results to see what difference air balancing has done to the ventilation system. Field measurements were performed at the training facility were the focus was on carbon dioxide but also on other parameters such as temperature, humidity and air velocity so that air exchange rate could be calculated. With these parameters can evaluations be made to see if air balancing of the ventilation system made any difference in indoor air quality.       During measurements in one of the training rooms where spinning is exercised was carbon dioxide levels up to 3300 ppm measured which is above the recommended indoor limit at 1000 ppm. If that room should be design to not exceed 1000 ppm must the air exchange rate increase from 6.3 h-1 to 35.1 h-1.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)