Torkning av sågspån vid pneumatisk transport : Praktiska mätningar och modellering

University essay from Karlstads universitet/Fakulteten för hälsa, natur- och teknikvetenskap (from 2013)

Author: Andreas Rosberg; [2015]

Keywords: torkning; sågspån; regressionsmodell;

Abstract: I Sverige är trädbränslen basen för förnyelsebar energi. Råmaterialet som används till pelletstillverkningen så som sågspån brukar ha en fukthalt på 50 procent. Att torka material som ska användas till att göra pellets är dyrt och en stor del av kostnaden kommer från den energi som används till torkningen. Torkning av hygroskopiska ämnen, som till exempel sågspån, kan delas in i tre steg. Det första torksteget karaktäriseras av att fukttransporten från materialet som ska torkas är konstant. I det andra torksteget börjar fukttransporten att minska då det uppstår torra ytor på materialet och i det tredje torksteget är materialets yta torrt och fukttransporten är som lägst och sker genom diffusion. Genom en kombination av en bandtork och en pneumatisk tork kan torkningen effektiviseras då den pneumatiska torken torkar sågspånet i det sista torksteget där bandtorken blir mindre effektiv. I en pneumatisk tork används uppvärmd luft för att torka sågspånet samtidigt som luften transporterar sågspånet genom torken. På Karlstads Universitet finns det en pneumatisk tork i laborationsskala för torkning av sågspån. I detta arbete gjordes en effektbalans över torken där lufttemperaturen var 150 °C. Effekten som gick åt till att torka sågspånet jämfördes med den avgivna effekten från den uppvärmda luften. Tre olika sorters sågspån användes. Dessa var färskt, uppfuktat samt pressat sågspån. Totalt genomfördes 36 stycken torkkörningar. Effektivitetsmåtten SMER och SPC användes för att jämföra hur torkningen av dessa tre sågspån varierade i effektivitet. En modell byggdes även i beräkningsprogrammet Excel som skulle användas för att beräkna utgående fukthalt hos sågspånet för att underlätta att planera framtida körningar i torken. Det beräknade luftflödet till torken var för lågt och ökades med 12 procent. Detta medför att endast en effektuträkning faller bort då effekten för torkning av sågspån skiljer sig mer än 15 procent från luftens avgivna effekt. SMER är som högst då lufthastigheten är 8 m/s och frekvensen på inmatningsskruven på torken är inställd på 13 Hz samt då lufthastigheten är 12 m/s och frekvensen på inmatningsskruven står på 26 Hz. SPC blir lägst vid en lufthastighet på 6 m/s för båda frekvenserna. Med hjälp av korrigeringsekvationer ger modellen en fukthalt ut på sågspånet som stämmer överens med praktiskt uträknade fukthalter med en noggrannhet på 0,8 procentenheter. Modellen fungerar mellan lufthastigheterna 6-14 m/s, då inmatningsskruven står på 13-26 Hz och startfukthalten hos sågspånet in i torken är 20 procent. Vid en startfukthalt på 20-50 procent hos sågspånet in i torken behövs korrigeringsekvationer som finns för lufthastigheterna 8 och 12 m/s samt vid ett materialflöde på 13 och 26 Hz. SMER för det färska sågspånet har tendenser till att vara lägre än för de andra sorterna. Då begränsat med data finns för torkning av pressat samt färskt sågspån behöver fler körningar göras för dessa sågspån. Om samma mönster upprepas kan det vara idé att undersöka energiflödena närmare vid pressning av sågspån för att se om denna process är mer energieffektiv än om sågspånet inte skulle ha förbehandlats. SPC blir lägre med lägre lufthastighet vilket beror på att med högre lufthastighet måste fläkten som skapar luftflödet jobba mer. Högre torkningstemperatur ger lägre SPC då tryckskillnaden över torken samtidigt blir lägre. Modellen fungerar bra och kan användas för att planera körningar som görs vid 150 °C ifall en fortsatt jämförelse vill göras mellan färskt, pressat samt uppfuktat sågspån. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)