Toward predictive maintenance in surface treatment processes : A DMAIC case study at Seco Tools

University essay from Luleå tekniska universitet/Institutionen för ekonomi, teknik, konst och samhälle

Abstract: Surface treatments are often used in the manufacturing industry to change the surface of a product, including its related properties and functions. The occurrence of degradation and corrosion in surface treatment processes can lead to critical breakdowns over time. Critical breakdowns may impair the properties of the products and shorten their service life, which causes increased lead times or additional costs in the form of rework or scrapping.  Prevention of critical breakdowns due to machine component failure requires a carefully selected maintenance policy. Predictive maintenance is used to anticipate equipment failures to allow for maintenance scheduling before component failure. Developing predictive maintenance policies for surface treatment processes is problematic due to the vast number of attributes to consider in modern surface treatment processes. The emergence of smart sensors and big data has led companies to pursue predictive maintenance. A company that strives for predictive maintenance of its surface treatment processes is Seco Tools in Fagersta. The purpose of this master's thesis has been to investigate the occurrence of critical breakdowns and failures in the machine components of the chemical vapor deposition and post-treatment wet blasting processes by mapping the interaction between its respective process variables and their impact on critical breakdowns. The work has been conducted as a Six Sigma project utilizing the problem-solving methodology DMAIC.  Critical breakdowns were investigated combining principal component analysis (PCA), computational fluid dynamics (CFD), and statistical process control (SPC) to create an understanding of the failures in both processes. For both processes, two predictive solutions were created: one short-term solution utilizing existing dashboards and one long-term solution utilizing a PCA model and an Orthogonal Partial Least Squares (OPLS) regression model for batch statistical process control (BSPC). The short-term solutions were verified and implemented during the master's thesis at Seco Tools. Recommendations were given for future implementation of the long-term solutions. In this thesis, insights are shared regarding the applicability of OPLS and Partial Least Squares (PLS) regression models for batch monitoring of the CVD process. We also demonstrate that the prediction of a certain critical breakdown, clogging of the aluminum generator in the CVD process, can be accomplished through the use of SPC. For the wet blasting process, a PCA methodology is suggested to be effective for visualizing breakdowns. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)