Electrical Propulsion System Design of a Blended Wing Body UAV

University essay from KTH/Skolan för teknikvetenskap (SCI)

Abstract: The conventional tube-and-wing aircraft has been around since the 1950s, with little to no innovative progress being made towards redesigning the conventional aircraft. The blended wing body (BWB) shape fuses the wing of the aircraft with the fuselage increasing structural strength while also increasing potential surface area to create lift, making it more efficient than conventional wing shapes. Today aviation has a 2 % CO2 contribution to global emissions. Aircraft manufacturers are predicting a steady rise for the aviation industry. The contribution of green-house gases is set to increase exponentially. Hydrogen fuel cells could deem a good fit between traditional combustion engine aircraft and electrical aircraft having a high efficiency but also being fuel-based. This report investigates the possibility of a prototype model of the Project ''Green Raven'' from KTH of creating a hybrid fuel cell BWB UAV with a 4 m wingspan. The analytical data is from literature and available benchmark data. First, an electrically driven subscale prototype is made and tested, and then the full-scale model is made. The prototype is pro-posed to be driven by a single two-bladed propeller with 10 x 4.7-inch dimensions running at 10000-13000 rpm with a takeoff weight of 4 kg, where 0.75 kg of the weight was from 5 Li-Po batteries. Performance parameters were calculated by given data with a given cruise speed of 30 m/s and a cruise endurance of 1 hour. The prototype will fly for close to maximum load at climb with an angle of 6°. With the Li-Po batteries with a total of 11 Ah, the aircraft has more than 10 % to spare for safety reasons.  

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)