Finite-element analysis of an induction motor with inter-turn short-circuit faults

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Stator inter-turn short circuit (ITSC) faults are one of the common sources for induction machine failure affecting their reliable operation. In this thesis, a finite element (FE) model is developed to study the ITSC fault. The FE model is developed for a prototype induction machine that has the potential to emulate an ITSC fault in the stator. With the developed FE model of the prototype machine, a simulation study is performed to understand the behaviour of various electrical and magnetic quantities in time- and frequency-domain. The investigated quantities are potentially good signatures of the stator winding faults and they are therefore suitable to use in a condition monitoring system. The prototype machine with ITSC faults has been tested in an experimental setup and the results are compared to the simulation and also to analytical results. For the fault current it was found a good agreement between analytical results, FE simulations and experimental results. Moreover, the FE simulation results of the negative-sequence stator current amplitude present a minor mismatch with the analytical and experimental results. The reason for this mismatch is due to an inaccurate knowledge of the prototype machine geometrical parameters. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)