NVH analysis and optimization of electric powertrain

University essay from KTH/Maskinkonstruktion (Inst.)

Abstract: With increasing focus on electromobility many companies are developing vehicles powered by an electric energy source. Previously, engines used to be the most prominent source of noise in a traditional Internal Combustion Engine (ICE) vehicle. Although engines are optimized to produce lower noise levels, the wide frequency range of an engine makes the sound generated by them more acceptable and less annoying when compared to narrow frequency tonal noise exhibited by electric transmission systems. Moreover, structural vibrations and whine noise from electric powertrain is more prominent in absence of the masking effect from engines. Hence, Noise Vibration and Harshness (NVH) study of electric powertrain assembly is of paramount importance even though electric vehicles are quieter than their ICE counterparts. In this thesis, the electric powertrain used for running hydraulic systems in an excavator is analysed in order to study its vibro-acoustic characteristics and optimize the gear design for improved NVH performance. The main objective of this project is to simulate the vibrations generated by motor and gear transmission error excitations, and consequently propose optimization methods to reduce the gear whine noise. The powertrain has been analysed using Romax 2020.1, a drivetrain analysis software. Ansys 2020 R2 has been used as a meshing tool for generating FE mesh of gearbox and motor components. The motor excitation forces are calculated in Ansys Maxwell as a separate student thesis. These forces are then imported into Romax to study the behaviour of the powertrain due to motor excitation forces. Vibration analysis is carried out on the powertrain to understand the effects of various forces on its dynamic response. Further, design of experiments is carried out based on which micro geometry modifications of gear tooth are recommended to optimize the vibration response of the powertrain.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)