Opto-Acoustic Slopping Prediction System in Basic Oxygen Furnace Converters

University essay from KTH/Skolan för informations- och kommunikationsteknik (ICT)

Abstract: Today, everyday objects are becoming more and more intelligent and some-times even have self-learning capabilities. These self-learning capacities in particular also act as catalysts for new developments in the steel industry.Technical developments that enhance the sustainability and productivity of steel production are very much in demand in the long-term. The methods of Industry 4.0 can support the steel production process in a way that enables steel to be produced in a more cost-effective and environmentally friendly manner. This thesis describes the development of an opto-acoustic system for the early detection of slag slopping in the BOF (Basic Oxygen Furnace) converter process. The prototype has been installed in Salzgitter Stahlwerks, a German steel plant for initial testing. It consists of an image monitoring camera at the converter mouth, a sound measurement system and an oscillation measurement device installed at the blowing lance. The camera signals are processed by a special image processing software. These signals are used to rate the amount of spilled slag and for a better interpretation of both the sound data and the oscillation data. A certain aspect of the opto-acoustic system for slopping detection is that all signals, i.e. optic, acoustic and vibratory, are affected by process-related parameters which are not always relevant for the slopping event. These uncertainties affect the prediction of the slopping phenomena and ultimately the reliability of the entire slopping system. Machine Learning algorithms have been been applied to predict the Slopping phenomenon based on the data from the sensors as well as the other process parameters.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)