Induced Seismicity in the Dannemora Mine, Sweden

University essay from Uppsala universitet/Geofysik

Abstract: Induced seismicity is a common phenomenon that occurs as soon as the stress state in the subsurface is externally altered in a way that faults are destabilized. It is especially problematic in stable tectonic regions where the area is not used to earthquakes; the infrastructure is not built to withstand ground movement and thus when the induced seismicity occurs damage can follow. In this thesis, mining-induced seismicity has been studied at the Dannemora mine, located in central Sweden, with the aim to locate the seismicity and gain understanding of its occurrence and behavior. The mining company, Dannemora Mineral AB, provided with blasting locations and times, as well as maps over the mine's orebodies and stopes. Seismic data acquired between 01 July 2014 - 25 March 2015 from 4 temporary seismic stations, deployed in the summer of 2014 surrounding the mine, along with 8 SNSN stations was analyzed. The project encompassed field work and processing of the data, which involved different methods to investigate the characteristics of the mine's seismicity: Statistics were kept to record the activity rate of the seismicity over time; spectral analysis was used to study the frequency content of the seismicity; particle motion plots were constructed to identify body-phases in the seismicity; Local Earthquake Tomography was used to upgrade the velocity model of the mine and to relocate the induced seismicity with more accuracy; cross-correlation was used to find events originating from similar sources; and finally, magnitude analysis was used to compare the different types of seismicity within the mine. Three main types of induced events were observed in the mine: low-frequency events with clear first arrivals, emergent events with long duration, and high-frequency events that could either have clear first arrivals or emergent-like with long durations. Through the analysis of their characteristics, they were linked to different types of rockbursts. The low-frequency events were linked to both reactivation of fault zones triggered by the mine activity, and rockbursts within the mine directly related to the mining. The emergent and high-frequency events were also linked to rockbursts directly related to the mine activity, e.g. ejection of rock from the tunnel walls or arch collapses in stopes.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)