Enhancing Comfort and Robustness in Hydronic Radiator Systems through Integration of Body Heat Predictions : A Study on a Novel LPV Controller

University essay from KTH/Skolan för industriell teknik och management (ITM)

Abstract: The quest to balance occupant comfort with energy efficiency is a key challenge in the field of heating systems, particularly for hydronic radiators. This study addresses this issue by investigating the integration of body heat predictions into a gain-scheduling controller for a hydronic radiator system. Although the benefits of gain-scheduling control strategies are acknowledged in HVAC systems, this exploration into the integration of body heat predictions in hydronic radiator systems presents a novel approach. A Linear Parameter-Varying (LPV) controller was employed and its impact on comfort, energy consumption, and robustness in the face of varying parameters such as the number of occupants, inaccuracies in body heat prediction, and set-point temperature changes was examined. This proposed controller was tested in a simulated house heating system made in Simulink. Findings indicated a substantial enhancement in comfort, especially under low-load scenarios. The controller demonstrated notable robustness against disturbances, highlighting the system’s reliability. Although energy consumption did not show significant reduction, the ability to maintain comfort levels without increasing energy use is a valuable contribution to sustainable heating practices. The results of this study extend our understanding of control strategies in hydronic radiator systems, providing a promising approach towards more comfortable, robust, and energy-efficient solutions. Further research should focus on improving the accuracy of body heat prediction algorithms and incorporating renewable energy sources for increased energy efficiency. In sum, this work represents a significant step towards a more balanced and sustainable future in the operation of hydronic radiator systems.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)