Polymer Directed Engineering of Novel Cellulose Network

University essay from KTH/Fiber- och polymerteknologi

Abstract: This study investigated a CNF/dendrimer hydrogel and how different concentrations of the carboxylated CNF and bis-MPA ammonium dendrimer affected the hydrogels’ rheological properties. A third generation bis-MPA ammonium dendrimer was diffused into a dispersion of carboxylated cellulose nanofibrils. The CNF was carboxylated by TEMPO-oxidation and phosphate buffer deprotonating the carboxylic group. The ammonium dendrimers are cationic and, when added to the dispersion, act as a salt together with the CNF-carboxy anion creating a cationic dendrimer salt bridge. These will serve as physical crosslinks, and a CNF/dendrimer network is formed; the structure and the absorbed water make a hydrogel. Amplitude strain sweeps were performed with a rheometer to determine the gels' elastic capabilities in terms of storage modulus, G’ and loss modulus, G” as the function of the shear stress. The result shows that a higher concentration of both CNF dispersion and dendrimer yielded a higher value of the storage modulus and a lower critical strain, meaning that the hydrogel becomes firmer and less elastic.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)