Pushing the Limits of Gossip-Based Decentralised Machine Learning

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Recent years have seen a sharp increase in the ubiquity and power of connected devices, such as smartphones, smart appliances and smart sensors. These de- vices produce large amounts of data that can be extremely precious for training larger, more advanced machine learning models. Unfortunately, it is some- times not possible to collect and process these datasets on a central system, due either to their size or to the growing privacy requirements of digital data handling.To overcome this limit, researchers developed protocols to train global models in a decentralised fashion, exploiting the computational power of these edge devices. These protocols do not require any of the data on the device to be shared, relying instead on communicating partially-trained models.Unfortunately, real-world systems are notoriously hard to control, and may present a wide range of challenges that are easily overlooked in academic stud- ies and simulations. This research analyses the gossip learning protocol, one of the main results in the area of decentralised machine learning, to assess its applicability to real-world scenarios.Specifically, this work identifies the main assumptions built into the pro- tocol, and performs carefully-crafted simulations in order to test its behaviour when these assumptions are lifted. The results show that the protocol can al- ready be applied to certain environments, but that it fails when exposed to certain conditions that appear in some real-world scenarios. In particular, the models trained by the protocol may be biased towards the data stored in nodes with faster communication speeds or a higher number of neighbours. Further- more, certain communication topologies can have a strong negative impact on the convergence speed of the models.While this study also suggests effective mitigations for some of these is- sues, it appears that the gossip learning protocol requires further research ef- forts, in order to ensure a wider industrial applicability.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)