CONNECTING THE DOTS : Exploring gene contexts through knowledge-graph representations of gene-information derived from scientific literature

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Analyzing the data produced by next-generation sequencing technologies relies on access to information synthesized based on previous research findings. The volume of data available in the literature is growing rapidly, and it is becoming increasingly necessary for researchers to use AI or other statistics-based approaches in the analysis of their datasets. In this project, knowledge graphs are explored as a tool for providing access to contextual gene-information available in scientific literature. The explorative method described in this thesis is based on the implementation and comparison of two approaches for knowledge graph construction, a rule-based statistical as well as a neural-network and co-occurrence based approach, -based on specific literature contexts. The results are presented both in the form of a quantitative comparison between approaches as well as in the form of a qualitative expert evaluation of the quantitative result. The quantitative comparison suggested that contrasting knowledge graphs constructed based on different approaches can provide valuable information for the interpretation and contextualization of key genes. It also demonstrated the limitations of some approaches e.g. in terms of scalability as well as the volume and type of information that can be extracted. The result further suggested that metrics based on the overlap of nodes and edges, as well as metrics that leverage the global topology of graphs are valuable for representing and comparing contextual information between knowledge graphs. The result based on the qualitative expert evaluation demonstrated that literature-derived knowledge graphs of gene-information can be valuable tools for identifying research biases related to genes and also shed light on the challenges related to biological entity normalization in the context of knowledge graph development. In light of these findings, automatic knowledge-graph construction presents as a promising approach for improving access to contextual information about genes in scientific literature.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)