Optimization of alloys recovery in steel scrap sorting : Technological, economic and environmental considerations for a better chromium, nickel and molybdenum recovery in steel scrap

University essay from KTH/Materialvetenskap

Abstract: Today’s steelmaking industry is highly dependent on steel scrap supply. In order to reduce the greenhouse gas emissions (GHGs) deriving from the steel industry, it is of utmost importance to ensure that high percentages of steel scrap are recycled, reducing the reliance on the traditional ore-based steelmaking, which is significantly more environmentally impactful. To reach this goal, a better steel scrap quality has to be achieved during the sorting process. This thesis work aims to propose an optimized sorting process able to separate the stainless steel scrap from the carbon steel scrap, both obtained in the ferrous fraction after a magnetic separation. This improved sorting process would be able to sort different types of stainless steel scraps according to their alloying content, ensuring a better recovery of chromium, nickel and molybdenum for stainless steel production. This would lead to a considerable reduction of CO2 emissions for the stainless steel production. In addition, an economic benefit could be obtained from the optimized sorting process, obtaining steel scrap of higher quality and thus selling the scrap at higher price. In this thesis work, technological considerations are addressed in order to select the most suitable technology to reach significant improvements in alloy recoveries in steel scrap. An economic and environmental model is then used in order to showcase the possible economic and environmental impacts resulting from the implementation of the proposed optimized sorting process. The results obtained are encouraging, showing that this improved sorting would save high amounts of CO2 emissions deriving from raw materials extraction and production, and showing that good profits can be obtained from the selling of the different stainless steel scrap sorted. In the future, where an increased production of steel is expected, this process would be even more beneficial both for the economy and for the environment.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)