Influence of mixing and heat transfer in process scale-up

University essay from Luleå tekniska universitet/Institutionen för teknikvetenskap och matematik

Abstract: Process scale-up studies are, generally, non-linear. This basically means that it is not possible to take a chemical process in the laboratory and bring it to a pilot or production plant by simply increasing the quantities of chemicals and the equipment size proportionally. There are many physico-chemical processes involved (such as reaction kinetics, fluid mechanics and thermodynamics), plus over the years a myriad of different equipment (stirrers, baffles, jackets...) have been developed with different geometrical and performance characteristics. Therefore, scale-up studies involve engineering issues, economic considerations, and risks assessment to reduce them to acceptable levels for the successful commercial scale implementation. Mixing and heat transfer assessments are often required when scaling a process, troubleshooting poor performance or transferring from one plant to another. This is because the rates of these physico-chemical processes are a function of the details of the equipment set-up and operating conditions, so they can vary widely from one vessel to another. Due to this series of drawbacks and the large number of parameters involved, there is the increasing interest to make use of scientific approaches in the early stages of process development, both modelling and simulation tools along with experimentation to try to predict the behaviour of chemical processes on a larger scale and, consequently, reduce costs and efforts from the beginning. This project was aimed at implementing a method to characterize production equipment and calculate its heat transfer coefficient experimentally from a thermal test. Both the created database, which contains information of about 70 reactors, and the heat transfer coefficient values are then used in different case studies with the objective of predicting the behaviour of the chemical processes examined at different scales: laboratory, pilot and production. The scale-up parameters calculation is detailed for each project with emphasis on the results and conclusions regarding the mixing and heat transfer performances.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)