Thermal conductivity Measurement of PEDOT:PSS by 3-omega Technique

University essay from Fysik och elektroteknik

Abstract: Conducting polymers (CP) have received great attention in both academic and industrial areas in recent years. They exhibit unique characteristics (electrical conductivity, solution processability, light weight and flexibility) which make them promising candidates for being used in many electronic applications. Recently, there is a renewed interest to consider those materials for thermoelectric generators that is for energy harvesting purposes. Therefore, it is of great importance to have in depth understanding of their thermal and electrical characteristics. In this diploma work, the thermal conductivity of PEDOT:PSS is investigated by applying 3-omega technique which is accounted for a transient method of measuring thermal conductivity and specific heat. To validate the measurement setup, two benchmark substrates with known properties are explored and the results for thermal conductivity are nicely in agreement with their actual values with a reasonable error percentage. All measurements are carried out inside a Cryogenic probe station with vacuum condition. Then a bulk scale of PEDOT:PSS with sufficient thickness is made and investigated. Although, it is a great challenge to make a thick layer of this polymer since it needs to be both solid state and has as smooth surface as possible for further gold deposition. The results display a thermal conductivity range between 0.20 and 0.25 (W.m-1.K-1) at room temperature which is a nice approximation of what has been reported so far. The discrepancy is mainly due to some uncertainty about the exact value of temperature coefficient of resistance (TCR) of the heater and also heat losses especially in case of heaters with larger surface area. Moreover, thermal conductivity of PEDOT:PSS is studied over a wide temperature band ranging from 223 - 373 K.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)