Thyroid Endocrine Disruption of Propylparaben Assessed Using an Optimized Individual Xenopus tropicalis Metamorphosing Tadpole Exposure System

University essay from Uppsala universitet/Institutionen för biologisk grundutbildning

Abstract: The anuran Xenopus tropicalis tadpole is an attractive model animal in toxicological evaluation of suspected thyroid disrupting xenobiotics. Due to its reliance of a functioning hypothalamic-pituitary-thyroid (HPT) axis for normal metamorphosis, effects on the HPT axis produces apical endpoints, which are easy to measure. More sensitive endpoints of mRNA expression and histological evaluation of the thyroid gland itself provide strong indications of in vivo thyroid endocrine disruption. X. tropicalis is traditionally exposed in groups of 20 animals in four replicates for each treatment group. However, exposing tadpoles individually can provide stronger statistics and a reduction of total animal sacrifice. In this study we have developed and optimized an individual exposure system by a method development study. This method was then applied in an exposure experiment of a suspected thyroid endocrine disruptor, propylparaben (PrP). Prometamorphotic (NF stage 51) X. tropicalis tadpoles were distributed in three treatment groups (0.05, 0.5 and 5.0 mg PrP/L water) and maintained semi-statically for 14 days. Afterwards, apical measurements (body weight (BW), total body length (BL), snout to vent length (SVL) and hind limb length (HLL)) and reached developmental stage were assessed. In addition, mRNA expression of HPT axis relevant genes encoding deiodinase 2 (D2, hepatic tissue), deiodinase 3 (D3, hepatic and tail tissue) and transthyretin (Ttr, hepatic tissue) were measured by quantitative reverse transcription PCR (qRT-PCR). The PrP exposure did not affect general growth and development, but it did cause a downregulation of dio3 and ttr. The downregulation of dio3 could possibly be associated with a reduced serum content of thyroid hormone, while ttr might be connected to a previously described xenoestrogenic effect of PrP in vitro and in fish.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)