Towards Affordable Sodium-Ion Batteries : Mechanochemical Synthesis and Electrochemical Assessment of Iron-Based Fluorophosphate Cathode Material

University essay from KTH/Materialvetenskap

Abstract: An urgent transformation from fossil fuels to cleaner energy sources to combat climate change has led to the utilization of renewable energies like solar, wind, and tidal power. However, the intermittency of these sources hinders their wider implementation. To address this, large-scale electrical energy storage (EES) systems are needed. These systems store excess energy during periods of surplus and release it during peak demand, enhancing grid reliability. Secondary batteries have been developed as promising EES solutions due to their reliability, independence from weather, and ease of maintenance. While lithium-ion batteries (LIBs) are popular as secondary batteries, their limited lithium supply, and rising costs demand for cost-effective alternatives. This study focuses on developing sodium iron fluorophosphate (Na2FePO4F) as a promising cathode material for SIBs. Because of its iron-based composition, which is generated from sustainable sources, Na2FePO4F offers a potential solution to the cost and supply difficulties related with LIBs. However, challenges exist, including low electronic conductivity and inferior electrochemical performance. To address these challenges, this research explores mechanochemically assisted solid-state synthesis routes as a low-cost and environmentally friendly approach. The characterization and performance evaluation of Na2FePO4F (NFPF) and NFPF/C positive electrode materials for sodium-ion batteries (SIBs) were systematically investigated through a range of analytical techniques, including XRD, TGA, SEM-EDS, FT-IR, and Raman analyses. A single-step solid-state synthesis demonstrates effectiveness in producing NFPF and NFPF/C-positive electrode materials. Moreover, Fe2O3 nanoparticles serve as the primary iron source in the solid-state synthesis of iron-based fluorophosphate Na2FePO4F/C, successfully producing both NFPF pristine phase and NFPF carbon-coated active materials. Finally, a comparison between the two synthesis pathways reveals that the active material from single-step solid-state synthesis exhibits a superior initial discharge specific capacity of 74.24 mAh⋅g−1 at 0.005 C, outperforming the double-step solid-state synthesis. These findings can contribute to the development of affordable and sustainable energy storage solutions, offering alternatives to traditional LIBs.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)