Evaluation of the ERA5-Land dataset for estimation of soil moisture in the permafrost region

University essay from Stockholms universitet/Institutionen för naturgeografi

Abstract: The permafrost region covers a vast area of land surface on the northern hemisphere,storing large amounts of carbon. Unfortunately, climate warming leads to permafrostthaw altering the hydrothermal state of permafrost soils. Due to the remoteness of thepermafrost region, access to field measurements is restricted. Therefore, remotesensing is an asset to study the permafrost region. Since permafrost is a sub-surfacephenomenon it cannot be directly observed from space. However, by using differenttypes of satellites the soil properties of the top soil layer, down to 10 cm depth, can beaccessed. To establish soil properties for the deeper soil layers modelling is required.The ERA5-Land (ERA5L) soil moisture is modelled based on climate reanalysis. Inthis study in-situ soil moisture data from the International Soil Moisture Network(ISMN) is used to evaluate the performance of the ERA5L soil moisture data withinthe permafrost region. The performance of the ERA5L soil moisture is found toperform best in soil layer 1 (0-7 cm depth) and worst in soil layer 3 (28-100 cm depth).For both soil layer 1 and 2 (0-7 and 7-28 cm depth) a moderate correlation(0.309 < R < 0.335) was found between ERA5L and in-situ soil moisture data, in Julyand August. The performance of the ERA5L soil moisture is best in Europe and worstin North-America. Compared to other evaluations of ERA5L soil moisture, within thepermafrost region, this study found a relatively low correlation. Therefore, this studyconcludes that on a global scale the ERA5L soil moisture is not ideal for directlyinforming permafrost research and decision making. However, integrating multisourcedatasets, resampled to a finer spatial resolution, could improve the performance ofERA5L soil moisture model on a global level. Moreover, on a local scale theapplication of a bias correction could also improve the performance of the ERA5L soilmoisture model.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)