Propulsion modelling of a generic submarine propeller

University essay from KTH/Skolan för teknikvetenskap (SCI)

Abstract: Self propulsion modelling is important in order to accurately simulate ships and submarinesusing Computational Fluid Dynamics (CFD). However, fully resolved simulations of hull andpropeller geometries are computationally heavy and time consuming. As such there is a greatinterest in lower order CFD models of propellers. This work investigates three lower ordermodels of a non-cavitating generic submarine propeller (INSEAN E1619) in OpenFOAM. Themodels investigated are Actuator Disk (AD). Rotor Disk (RD) and Actuator Line Model (ALM).The AD model applies a momentum change based on propeller performance coefficients overa disc cell set. The RD uses Blade Element Method (BEM) to calculate a more realistic thrustdistribution over the disk. Finally the ALM applies BEM over seven rotating lines within the cellset disc. The source code to the RD model was modified according to suggestions provided fromearlier studies on the model. The ALM used was originally designed for turbines which wasrectified by changing the force projection vectors in the source code to model propellers instead.There was not enough published data to directly utilize BEM on the E1619 propeller, thus thedata was generated by conducting 2D simulations on every element. The simulations were setup to replicate results provided in earlier works with higher order models in order to compareboth quantitative and qualitative results. It was found the ALM matched the reference databest out of the models tested in this work. The RD was qualitatively similar to the time averageof the ALM fields but numerically inaccurate. The AD results were poor, both quantitativelyand qualitatively.  

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)