Exploring the Feasibility of Exercise Detection on the Exxentric kBox Platform

University essay from KTH/Medicinteknik och hälsosystem

Abstract: Flywheel training is an increasingly popular training method that aids in the recovery process and promotes strength development while reducing the risk of re-injury. Additionally, automatic exercise classification offers athletes the convenience of effortlessly monitoring and tracking their training progress, enabling them to maintain consistency and achieve their fitness goals effectively. This thesis aims to investigate the feasibility and accuracy of developing a machine-learning model for classifying exercises performed on Exxentric kBox machines. The objective is to assess the model’s accuracy and determine whether the features provided by the Exxentric app are sufficient for constructing a robust classifier. To lay a strong foundation for the investigation, the research begins with a comprehensive literature review of exercise recognition studies. An exploratory data analysis is then conducted to gain valuable insights into the characteristics of the exercise data. The data preparation phase involves various techniques such as cleaning, feature engineering, scaling, sampling, and encoding to optimize the data for modeling. Moreover, signal processing techniques are employed to extract relevant features from the exercise data. A testing protocol is established, consisting of two sets of ten exercises. Each exercise is performed with a randomized number of repetitions, ranging from 5 to 12 repetitions. Data collection is carried out with the participation of ten individuals using the Exxentric App on their smartphones. Different types of classifiers are trained using data from the Exxentric database and tested on the collected data on-site, employing the generated features. Additionally, a CNN classifier is explored, utilizing only angular velocity as input. Comparative analysis is performed on the evaluation metrics of the models. In conclusion, while achieving accurate classification for all ten exercises was not fully realized, the CNN model relying on angular velocity as input exhibited promising results. Notably, squats were predicted correctly 95% of the time, which is the most prominent observation. The model also demonstrated significant accuracy in correctly identifying bent-over rows (72%), deadlifts (72.2%), standing calf raises (70.6%), and biceps curls (67%). Further research is warranted to improve the effectiveness and accuracy of exercise classification models. This includes exploring alternative input methods and refining feature engineering techniques to advance the field.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)