A Feasibility Analysis of Natural Composite Alternatives in High Performance Sailing Vessels

University essay from KTH/Lättkonstruktioner, marina system, flyg- och rymdteknik, rörelsemekanik

Abstract: The construction of high-performance vessels like the F50 catamaran has traditionally prioritized advanced composite materials and performance-driven design. However, there is a growing need to incorporate sustainable materials and practices, with their performance in marine applications remaining relatively unknown. This study aims to address this gap by investigating the feasibility of using flax laminates as an environmentally friendly alternative for frequently damaged components, specifically the stern extension.Mechanical testing of flax laminates revealed lower stiffness per fiber areal weight compared to literature values and supplier data sheets, primarily attributed to moisture uptake in the flax material. These findings highlight the significance of considering real-world environmental conditions and specific application requirements when evaluating the mechanical properties of flax composites. Despite the mechanical challenges, environmental analysis demonstrated that the flax alternative for the stern extension offers promising benefits. It exhibits a carbon-positive characteristic, resulting in lower energy consumption during production, and comparable waste production to the original carbon fiber extension. However, it is important to note that these advantages are based on idealized theoretical data, and further optimization is required to address variations in resin usage and the strength of the cured composite.To address the weight discrepancies among the fleet, currently rectified by corrector weights, a practical solution is proposed utilizing flax composite layups. Selective implementation of the flax stern extension on the lightest one-third of the fleet can effectively balance weight distribution without compromising overall yacht performance. This strategy allows SailGP to incorporate sustainable materials while maintaining uniformity and performance across all participating yachts. By considering the environmental impact and structural considerations, this study provides valuable insights for the development of sustainable marine composites and encourages further research in optimizing the performance and reliability of flax-based laminates in marine applications.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)