Process development and optimization towards binder jetting of Vanadis 4 Extra

University essay from Uppsala universitet/Institutionen för materialvetenskap

Abstract: Additive manufacturing (AM) has experienced significant growth and development in recent years, owing to the ability to produce complex parts using a wide range of materials with relative ease. Powder bed-based metal AM has been at the forefront of this growth, even reaching the point where parts can be manufactured for end-use applications. Binder jetting (BJ) is one such technique where a liquid binder is selectively deposited on powder layers to create a green body which is then densified using sintering. The aim of this work was to use binder jetting to produce parts using Vanadis 4 Extra, a highly alloyed cold-work tool steel produced by Uddeholm AB for applications involving high demand on abrasive wear. Optimization of the densification parameters, which included debinding atmosphere, debinding temperature, sintering atmosphere, sintering temperature, and sintering time, to achieve full density parts was carried out as the first phase. It was found that the sintering atmosphere and time had the most significant impact on the density of the samples while the debinding atmosphere heavily impacted the C residue from the binder. In the second phase, samples were produced using the optimized parameters for mechanical analysis, which included analyses of the surface roughness and the wear resistance of the binder jetted samples against the conventionally produced samples. The surface roughness was in line with the data presented in literature for binder jetted samples. The binder jetted samples produced during this work exhibited better wear resistance than the conventionally produced samples, with the samples post-processed using hot isostatic pressing showing even better wear resistance. One possible explanation is the diffusion of N from the sintering atmosphere into the samples, leading to the conversion of carbides to carbonitrides and even nitrides. However, further investigation is needed in order to confirm this theory.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)