Life cycle assessment of industrialized lithium-ion battery recycling : Mechanical and hydrometallurgical treatment from an ex-ante perspective

University essay from KTH/Hållbar utveckling, miljövetenskap och teknik

Abstract: As the use of lithium-ion batteries exponentially increases through demand for electric vehicles and energy storage systems, so will the need for end-of-life treatment subsequently increase. Recycling the valuable materials from batteries in an efficient and extensive fashion could decrease the environmental impacts of batteries. Northvolt AB is a Swedish battery manufacturer currently constructing a Gigafactory in Skellefteå and is furthermore developing a recycling process, focused on hydrometallurgy, with full-scale recycling operations a couple of years away. In order to assess the environmental hotspots of the process, with a focus on greenhouse gas emissions, a life cycle assessment was conducted with data from Northvolt AB. This data was based on learnings from a pilot plant currently under operation but scaled up to industrial level for an ex-ante type of assessment. The industrial operations at Skellefteå represented +95% of the climate change impact, the remainder arising from a European collection point. The most significant impact driver was waste management (56,5% of the climate change impact category), specifically incineration of recovered materials and residuals. The results indicate that harnessing renewable energy in both the direct operations and the supply chain is of high importance. Chemicals (27%) and electricity (7%) had extensively smaller emissions thanks to the harnessing of renewable energy in both direct operations and the supply chain, compared to electricity mixes with large shares of fossil fuels. Furthermore, large variability was found in impacts of recovered materials depending on the chosen allocation method. The benefit of the Revolt process is likely to be affected by ongoing research projects to recycle and upgrade materials that are currently sent to incineration. For an as high environmental efficiency as possible, it is important that the process make as much use of all the recovered materials as possible, find efficient waste treatment processes, and continue to source from production using as electricity mixes with high shares of renewable energy. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)