Effects of Virtual Reality and Trajectory Visualization on Neurosurgical Training

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: With its increasing potential, Virtual Reality (VR) technology has found a growing presence in medical education. In the domain of neurosurgical training, VR has been thoroughly investigated, but gaps still persist, such as in the field of Minimally Invasive Surgery (MIS) and assistive visualizations. Thus, this thesis project aims at combining visualizations of motion captured surgical simulation data with a VR environment for training in the minimally invasive procedure of External Ventricular Drain (EVD) placement. A user study was conducted with the goal of investigating effectiveness (in terms of speed, confidence, and accuracy) when identifying certain features of the trajectory of a catheter simulating an EVD placement. The conditions compared were two visualization techniques, 4D-time density and trail, as well as a VR and desktop environment. The study employed a betweensubjects design when comparing visualizations and a within-subjects design when comparing environments. Results from 20 participants indicate a higher speed for the 4D-time density visualization compared to the trail visualization and no visualization in the VR environment. Participants also found the 4D-time density visualization significantly more helpful in VR compared to desktop, when identifying one of the features. The VR environment also had a significant positive impact on speed as well as confidence for certain combinations of the conditions, compared to the desktop environment. Further, participants tended to prefer the VR environment and found tasks easier in this environment. In conclusion, the 4D-time density visualization and VR environment have the potential to improve efficiency when interpreting and understanding the trajectory of a catheter during EVD placement.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)