Modal analysis of pedestrian-induced torsional vibrations based on validated FE models

University essay from KTH/Bro- och stålbyggnad

Abstract: Finite element (FE) models serve as the base of many different types of analysis as e.g. dynamic analysis. Hence, obtaining FE models that represent the actual behaviour of real structures with great accuracy is of great importance. However, more often than not, there are differences between FE models and the structures being modelled, which can depend on numerous factors. These factors can consist of uncertainties in material behaviour, geometrical properties and boundary- and continuity conditions. Model validation is therefore an important aspect in obtaining FE models that represents reality to some degree. Furthermore, model verification is also important in terms of verifying theoretical models, other than FE models, in fields such as fatigue-, fracture- and dynamic analysis. In this thesis, two pedestrian steel bridges, the Kallhäll bridge and the Smista bridge, have been modelled in a FE software based on engineering drawings and validated against experimental results with regard to their natural frequencies. Furthermore, in this thesis, a model has been developed in MATLAB based on modal analysis that accounts for pedestrian-induced torsional vibrations, the 3D SDOF model. This model has been verified against the previously mentioned FE models. The aim of this thesis is hence two parted where the first part is to develop three-dimensional FE models of two pedestrian bridges and validate them against measured data regarding the natural frequencies. The second part is to further develop a model for analysing the effect of pedestrian-induced torsional vibrations and to investigate whether the model captures the actual dynamic response of such loading. The results showed that the natural frequencies for the first bending- and torsional mode from the FE models corresponded well to the measured ones with the largest difference of 5 \% obtained for the natural frequency of the first bending mode for the Smista bridge. Furthermore, the 3D SDOF model was able to capture the dynamic response of torsional vibrations with an overall difference of less than 2 \% in comparison to the FE models. The model can be improved by further studying the pedestrian-structure interaction as well as studying the effect of using approximative functions describing the mode shapes.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)