Change in uptake and transfer of zinc in the food chain when predatory fish disappear from the system

University essay from Uppsala universitet/Institutionen för geovetenskaper

Abstract: There is a widespread distribution of possibly toxic heavy metals, such as zinc, in aquatic ecosystems. Simultaneously aquatic food webs are changing due to declining predatory fish stocks. In this study, I examine how such an alteration of the food chain, the disappearance of a top trophic level, can affect the uptake and transfer of pollutants in lower trophic levels. I investigate a tri-trophic food chain containing resources (zooplankton), consumer fish, and predatory fish and use zinc as an example pollutant. This is done by constructing and adding a pollutant module to a stage-structured biomass model. The combined model is based on a system of eight ordinary differential equations to study the zinc concentrations in the consumer fish population in two scenarios: in the presence or absence of predatory fish, i.e., the food chain consists of either three or two trophic levels. The results show that the removal of the predator affects the concentration of the pollutant in the consumer population. In the absence of predators, the uptake of zinc from food is smaller and the zinc concentration is lower in the consumer fish population. The results remain the same for different values of the pollutant-specific parameters, i.e., uptake rate from water, assimilation efficiency, and efflux rate. This could indicate that food chain dynamics have a strong influence on the uptake and transfer of pollutants. Furthermore, this means that even if the model is parametrized to zinc in this study, the modeling tool can also be used for other pollutants with similar biokinetics as zinc. The results from this study highlight the importance to include food chain structure and dynamics when studying the uptake and transfer of pollutants. The novel knowledge and the developed tool from this study could advantageously be included to a higher degree when discussing the impact of pollution on aquatic ecosystems and mitigation measures.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)