Energy-Efficient Private Forecasting on Health Data using SNNs

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Health monitoring devices, such as Fitbit, are gaining popularity both as wellness tools and as a source of information for healthcare decisions. Predicting such wellness goals accurately is critical for the users to make informed lifestyle choices. The core objective of this thesis is to design and implement such a system that takes energy consumption and privacy into account. This research is modelled as a time-series forecasting problem that makes use of Spiking Neural Networks (SNNs) due to their proven energy-saving capabilities. Thanks to their design that closely mimics natural neural networks (such as the brain), SNNs have the potential to significantly outperform classic Artificial Neural Networks in terms of energy consumption and robustness. In order to prove our hypotheses, a previous research by Sonia et al. [1] in the same domain and with the same dataset is used as our starting point, where a private forecasting system using Long short-term memory (LSTM) is designed and implemented. Their study also implements and evaluates a clustering federated learning approach, which fits well the highly distributed data. The results obtained in their research act as a baseline to compare our results in terms of accuracy, training time, model size and estimated energy consumed. Our experiments show that Spiking Neural Networks trades off accuracy (2.19x, 1.19x, 4.13x, 1.16x greater Root Mean Square Error (RMSE) for macronutrients, calories burned, resting heart rate, and active minutes respectively), to grant a smaller model (19% less parameters an 77% lighter in memory) and a 43% faster training. Our model is estimated to consume 3.36μJ per inference, which is much lighter than traditional Artificial Neural Networks (ANNs) [2]. The data recorded by health monitoring devices is vastly distributed in the real-world. Moreover, with such sensitive recorded information, there are many possible implications to consider. For these reasons, we apply the clustering federated learning implementation [1] to our use-case. However, it can be challenging to adopt such techniques since it can be difficult to learn from data sequences that are non-regular. We use a two-step streaming clustering approach to classify customers based on their eating and exercise habits. It has been shown that training different models for each group of users is useful, particularly in terms of training time; however this is strongly dependent on the cluster size. Our experiments conclude that there is a decrease in error and training time if the clusters contain enough data to train the models. Finally, this study addresses the issue of data privacy by using state of-the-art differential privacy. We apply e-differential privacy to both our baseline model (trained on the whole dataset) and our federated learning based approach. With a differential privacy of ∈= 0.1 our experiments report an increase in the measured average error (RMSE) of only 25%. Specifically, +23.13%, 25.71%, +29.87%, 21.57% for macronutrients (grams), calories burned (kCal), resting heart rate (beats per minute (bpm), and minutes (minutes) respectively. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)