Wind Climate Estimates - Validation of Modelled Wind Climate and Normal Year Correction

University essay from Luft- och vattenlära

Abstract: Long time average wind conditions at potential wind turbine sites are of great importance when deciding if an investment will be economically safe. Wind climate estimates such as these are traditionally done with in situ measurements for a number of months. During recent years, a wind climate database has been developed at the Department of Earth Sciences, Meteorology at Uppsala University. The database is based on model runs with the higher order closure mesoscale MIUU-model in combination with long term statistics of the geostrophic wind, and is now used as a complement to in situ measurements, hence speeding up the process of turbine siting. With this background, a study has been made investigating how well actual power productions during the years 2004-2006 from 21 Swedish wind turbines correlate with theoretically derived power productions for the corresponding sites. When comparing theoretically derived power productions based on long term statistics with measurements from a shorter time period, correction is necessary to be able to make relevant comparisons. This normal year correction is a main focus, and a number of different wind energy indices which are used for this purpose are evaluated. Two publicly available (Swedish and Danish Wind Index) and one derived theoretically from physical relationships and NCEP/NCAR reanalysis data (Geostrophic Wind Index). Initial testing suggests in some cases very different results when correcting with the three indices and further investigation is necessary. An evaluation of the Geostrophic Wind Index is made with the use of in situ measurements. When correcting measurement periods limited in time to a long term average, a larger statistical dispersion is expected with shorter measurement periods, decreasing with longer periods. In order to investigate this assumption, a wind speed measurement dataset of 7 years were corrected with the Geostrophic Wind Index, simulating a number of hypothetical measurement periods of various lengths. When normal year correcting a measurement period of specific length, the statistical dispersion decreases significantly during the first 10 months. A reduction to about half the initial statistical dispersion can be seen after just 5 months of measurements. Results show that the theoretical normal year corrected power productions in general are around 15-20% lower than expected. A probable explanation for the larger part of this bias is serious problems with the reported time-not-in-operation for wind turbines in official power production statistics. This makes it impossible to compare actual power production with theoretically derived without more detailed information. The theoretically derived Geostrophic Wind Index correlates well to measurements, however a theoretically expected cubed relationship of wind speed seem to account for the total energy of the wind. Such an amount of energy can not be absorbed by the wind turbines when wind speed conditions are a lot higher than normal.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)