Enhancement-basedSmall TargetDetection for InfraredImages

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Infrared small target detection is widely used in fields such as military and security. UNet, which is a classical semantic segmentation method proposed in 2015, has shown excellent performance and robustness. However, U-Net suffers from the problem of losing small targets in deep layers after multiple down-sampling operations. Dilated convolution, as a special convolution that can increase the receptive field without increasing the number of parameters, is considered to be able to optimize the problems caused by down-sampling. Dense Nested Attention Network (DNANet), due to its superior performance, was chosen as the baseline, but it still has the issue of target loss. This study proposes three optimization directions: deep down-sampling replaced by cascaded dilated convolution, dilated spatial attention, and dilated residual block. In these three directions, this study proposes four methods, respectively DNANet-DS-1, DNANet-DS-2, DNANet-Att, and DNANet-RB. Two open-source infrared small target datasets, NUDT-SIRST and NUAA-SIRST, were used in this study. The four proposed methods were trained and tested on these two datasets. Among them, DNANetRB significantly outperforms other methods on the NUAA-SIRST dataset, so further experiments were conducted to observe the influence of different network depths on DNANet-RB. The experimental result indicates that when the network depth exceeds a certain threshold, the network can only achieve marginal improvements, but the number of parameters will increase significantly.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)