Methane Production through Anaerobic Digestion at Backyard Pig Farms in Pampanga, Philippines

University essay from Karlstads universitet/Fakulteten för hälsa, natur- och teknikvetenskap (from 2013)

Abstract: The Pampanga province is one of the largest pork-producing provinces in the Philippines. Half of the province's pigs are reared in so-called back-yard farms. At these farms, there are no regulations regarding manure management and because of this, large amounts of manure are dumped close to the stables. These actions lead to spontaneous emission of greenhouse gases, eutrophication of rivers and groundwater pollution. In addition, the spread of manure contributes to inadequate sanitation and increased risks of disease among the inhabitants of the province. LPG and wood are the most popular fuels for cooking in the Philippines. LPG is most common in the cities, while more than 60 percent of the rural population still relies on firewood for cooking. LPG is a fossil fuel that, when burned, contributes to an enhanced greenhouse effect. The use of wood increases the pressure on the local biomass and increases the risk of lung diseases for the user. Anaerobic digestion of pig manure under contributes to a more sustainable manure management. At the same time, energy in form of biogas is produced. Biogas is a renewable energy source, which is considered carbon neutral. If pig manure is co-digested with kitchen waste, a more efficient and stable digestion process may be achieved. This study aims to contribute to sustainable development at backyard pig farms in the Pampanga province by demonstrating how pig manure and kitchen waste can be utilized for biogas production. In order to develop an appropriate composition of pig manure and kitchen waste for anaerobic digestion, batch digestion of pig manure and kitchen waste was performed at laboratory scale. During a field study, the substrate composition was digested in test plants under local conditions in Pampanga. During the field study, several field trips to backyard pig farms were performed. Based on prevailing conditions and available materials in the province, a full-scale biogas digester was designed. The digester was sized to produce enough biogas to fulfil one family’s daily requirement of cooking fuel. If the daily biogas production reaches 2.5 m3 it is possible to replace 178 kg LPG or 9855 kg of firewood every year. The reduction of LPG prevents 2700 kg carbon dioxide equivalents from being emitted to the atmosphere every year. The reduction of LPG use also results in an annual saving of 9062 PHP (1672 SEK) for a family. This number corresponds to 11 procent of the total investment cost of the digester.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)