Optimization Workflow for Flat Slab Systems : Using Parametric Design with Visual programming

University essay from KTH/Mekanik

Author: Klas Lindstrand; Axel Simonsson; [2018]

Keywords: ;

Abstract: The advancement of IT and technology has enabled the development of boundary breaking tools such as Parametric design and visual programming. Structural engineering has the potential to take the advantage of this development, by implementing visual programming which with the combination of optimization algorithms can explore design proposals. This opens up new possibilities to work closer with architects in the early stages of projects to create bolder architectural and structural designs. The task of the master thesis was to create a workflow using parametric design with visual programming and including an optimization algorithm. In the workflow, an optimization process should perform structural analysis and optimization operations to find suboptimal flat slab system designs. The idea was that the workflow should be implemented in the early stages of the structural design process, where an architectural model is used as a boundary to generate suboptimal flat slab systems based on user input. Thereafter, the different generated solutions need to be evaluated and verified by an engineer before proceeding further to the final design. The result obtained from the workflow was that an optimized flat slab system with column placements could be created through an optimization process with input data including geometry, loads and element properties. This led to an approach which exploited the capabilities of using parametric design and visual programming for structural design. This meant that, the user could alter the optimization process to narrow down the generated solutions to find the optimal flat slab system based on the requirements of the project. The results of the structural analysis in the workflow was not fully satisfactory, meaning it could not be used for final design without verification. The conclusion was that parametric design in combination with visual programming and optimization algorithms could generate multiple alternative designs. These alternatives could be used as inspiration for engineers to create new structural solutions in the early stages.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)