Optimization and Additive Manufacturing for HPGP Rocket Engines

University essay from KTH/Kraft- och värmeteknologi

Abstract: This thesis aims to investigate whether additive manufacturing is applicable in manufacturing the 1N thruster option that Bradford Ecaps offers. Therefore, the nozzle design is of particular interest as AM provides accessibilities to manufacturing complex structures. The current Ecaps 1N thruster has an operating thrust lifespan that exceeds the required lifespan commonly needed for the majority of customers. With AM, an increase in production throughput and optimization of nozzle design is possible. A candidate material, a platinum group metal, was picked for a future 1N thruster prototype concerning the limiting operating constraints. Computational fluid analysis was performed to investigate different contour nozzles to investigate the possibility of improving the performance of the Bradford ECAPS 1N thruster. AMATLAB code was developed to model the contour nozzles, and ANSYS Fluent was used for the computational analysis. Three different nozzle geometries were evaluated to investigate the overall performance of the expanding exhaust gas and thrust properties in vacuum conditions. Configuration 1. which had an extended nozzle was selected as a solution since it eliminatedthe interferences with the continuum. The Nasa CEA code was used to generate the fluid gas properties. No substantial performance gain was observed for the 1N thruster. This was found to be due to the boundary-dominated flow exhibited in the nozzle. A conical nozzle was found to work comparatively well.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)