Link Prediction Using Learnable Topology Augmentation

University essay from KTH/Matematik (Avd.)

Abstract: Link prediction is a crucial task in many downstream applications of graph machine learning. Graph Neural Networks (GNNs) are a prominent approach for transductive link prediction, where the aim is to predict missing links or connections only within the existing nodes of a given graph. However, many real-life applications require inductive link prediction for the newly-coming nodes with no connections to the original graph. Thus, recent approaches have adopted a Multilayer Perceptron (MLP) for inductive link prediction based solely on node features. In this work, we show that incorporating both connectivity structure and features for the new nodes provides better model expressiveness. To bring such expressiveness to inductive link prediction, we propose LEAP, an encoder that features LEArnable toPology augmentation of the original graph and enables message passing with the newly-coming nodes. To the best of our knowledge, this is the first attempt to provide structural contexts for the newly-coming nodes via learnable augmentation under inductive settings. Conducting extensive experiments on four real- world homogeneous graphs demonstrates that LEAP significantly surpasses the state-of-the-art methods in terms of AUC and average precision. The improvements over homogeneous graphs are up to 22% and 17%, respectively. The code and datasets are available on GitHub'.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)