End-of-life wind blade recycling through thermal process

University essay from Uppsala universitet/Institutionen för materialvetenskap

Abstract: Renewable energy production with wind turbines has been rising in the last 30 years and it is a crucial technology, which is necessary for the energy transition. As sustainable as the energy production of wind turbines is, the waste management of the blade material is not. Most of the blades end up on a landfill or get incinerated. There are different types of recycling methods, but the most commonly used is to shred the fibers into little pieces and reusing them for filler material in the concrete industry. This approach does not actually split up the blade material into its components but it is more of a downcycling. In this thesis, a new type of pyrolysis will be looked into, which splits up the blade material into its components namely glass fibers and plastic using molten salt. This process would make the glass fiber industry more sustainable by introducing a recycled glass fiber with minimal loss in quality. In a first step, the blade material will be examined more closely with a thermogravimetric analysis to find out what kind of plastic it is and what temperature would be necessary to pyrolyze it. This information will be used to conduct an experiment in a molten salt solution and determine the necessary reaction time and temperature. This data will be used to compare the costs of this method with shredding the material and the conventional pyrolysis. From the thermogravimetric analysis, it was possible to determine that the type of plastic used in this turbine was made out of epoxy. The maximum degredation of this material occurred at 380 ◦C. Not many experiments could be conducted in order to find the optimal conditions for the pyrolysis process due to difficulties with the furnace. Nevertheless, one sample was successfully pyrolyzed at a temperature of 400 ◦C with a residence time of 15 minutes. With the current market conditions in the recycled glass fibers industry, this product would be too expensive and the demand would be too little. However, the market is expected to grow in the next couple years due to rising interests in circular economy and governments introducing regulations. Nevertheless, it is necessary to increase the efficiency of the molten salt pyrolysis in order to be applicable to a bigger scale. More experiments should be conducted with cheaper molten salt in order to sink the costs of the process. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)