Sustainable use of Baltic Sea natural resources based on ecological engineering and biogas production : System analysis and case study Trelleborg

University essay from KTH/Industriell ekologi

Abstract: Eutrophication is one of the most serious environmental problems in the Baltic Sea due to factors such as nutrient discharges from different sources and long residence time. Eutrophication gives rise to increased primary production, often followed by oxygen depletion and disruption of important ecosystems. An action plan has been created by the Helsinki Commission (HELCOM) in order to achieve good ecological status of the Baltic Sea in the year of 2021. According to the action plan, 21 000 tonnes of nitrogen and 290 tonnes of phosphorus shall be decreased of the annual discharge from Sweden. The aim of methods within ecological engineering is to solve environmental problems, and the applications ranging from the harvesting of existing ecosystems to the construction of new ecosystems. This study evaluates if harvest of algae, reed, and mussels can help meeting the goals of the action plan considerably, in accordance with areas and biomass amounts that need to be harvested, and to assess the efficiency of the three biomasses with regards to nutrient reduction. The potential of harvested biomasses as substrates in biogas production and as fertilizers is investigated, and how much fossil CO2 that can be saved from being released to the atmosphere if net energy benefits, calculated from energy budgets in the biogas process, replaces fossil fuels. Life cycle inventories which extend from the harvest (i.e. from the Baltic coast of Sweden) to the production of biogas have been made in order to investigate the biogas potential of algal, reed, and mussel biomass. Suitability of the three biomasses as fertilizers has been assessed through comparison between nutrient sufficiency of crops and nutrient contents of the three biomasses (i.e. based on quotients of nitrogen). The quantity of biomass in the areas that can be harvested can help meeting the goals of the action plan drawn up by HELCOM, and mussels show to be most efficient with regards to nutrient reduction efficiency. Reed has the highest net energy benefit followed by algae, and both biomasses show potential of further investigation as substrates in the biogas production process. Mussels have low net energy benefit and thus are not a suitable substrate in biogas production. The three biomasses are suitable as fertilizers with respect to contents of nitrogen but the content of phosphorus occurs under the sufficiency levels for the crops (i.e. peas, grain, and sugar beets). For algae and reed, the potassium contents occur above the sufficiency level for peas and grain but under the level for sugar beets, mussels contain lower levels of potassium than the need of the investigated crops.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)